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Abstract—Bitcoin, a decentralized cryptographic currency that
has experienced proliferating popularity over the past few years,
is the common denominator in a wide variety of cybercrime.
We perform a measurement analysis of CryptoLocker, a family
of ransomware that encrypts a victim’s files until a ransom
is paid, within the Bitcoin ecosystem from September 5, 2013
through January 31, 2014. Using information collected from
online fora, such as reddit and BitcoinTalk, as an initial starting
point, we generate a cluster of 968 Bitcoin addresses belonging
to CryptoLocker. We provide a lower bound for CryptoLocker’s
economy in Bitcoin and identify 795 ransom payments totalling
1,128.40 BTC ($310,472.38), but show that the proceeds could
have been worth upwards of $1.1 million at peak valuation. By
analyzing ransom payment timestamps both longitudinally across
CryptoLocker’s operating period and transversely across times
of day, we detect changes in distributions and form conjectures
on CryptoLocker that corroborate information from previous
efforts. Additionally, we construct a network topology to detail
CryptoLocker’s financial infrastructure and obtain auxiliary in-
formation on the CryptoLocker operation. Most notably, we find
evidence that suggests connections to popular Bitcoin services,
such as Bitcoin Fog and BTC-e, and subtle links to other
cybercrimes surrounding Bitcoin, such as the Sheep Marketplace
scam of 2013. We use our study to underscore the value of
measurement analyses and threat intelligence in understanding
the erratic cybercrime landscape.

Index Terms—Bitcoin, CryptoLocker, cybercrime, ransom-
ware, security.

I. INTRODUCTION

Increasingly, Bitcoin [1] is becoming a staple utility among
cybercriminals [2]—two of the digital currency’s main attrac-
tions are its provisions for pseudoanonymity and its irreversible
transaction protocol. Unfortunately, these provisions engender
the dichotomous incentives between legitimate users, who wish
to transfer money efficiently and securely, and cybercriminals,
who leverage these properties to commit irrevocable and
supposedly untraceable financial fraud.

Although the notion of digital currencies has existed long
before Bitcoin’s debut, Bitcoin was proposed by an individual
under the pseudonym Satoshi Nakamoto in 2008. Nakamoto
introduced a distributed public ledger that serializes a record
of all confirmed transactions known as the blockchain. A fun-
damental breakthrough in technology, the blockchain enables
the Bitcoin system to operate under a decentralized peer-to-
peer network where users are identifiable by public keys, or
more commonly referred to as Bitcoin addresses, intended
to provide pseudonymity. Users can transfer digital currency,

called bitcoins1, to other addresses by issuing transactions,
which are then broadcast to the public blockchain.

Since all confirmed transactions are visible to the public, the
blockchain’s inherent transparency has proven to be ineffective
in preserving the anonymity of its users (legitimate users
and cybercriminals alike). While Bitcoin addresses alone are
not explicitly tied to any real-world entities, a number of
recent research efforts have shown that monetary movements
and address links can be traced throughout the blockchain
data structure [3]–[8]. Even though there have been many
attempts to enhance user privacy with varying degrees of
success (i.e. generating multiple addresses, using bitcoin mixers
such as Bitcoin Fog [8], or using privacy-enhancing overlays
such as Coinjoin [9]), user privacy is further undermined
when real-world information and quasi-identifiers found on
the Internet can be imputed to users’ Bitcoin addresses. Given
Bitcoin’s meteoric rise in popularity and scale, such a condition
was inevitable and the overlap between publicly available
data and blockchain data has improved identification and
attribution throughout a vast, connected network of users—
there are addresses tied to forum usernames, anonymous online
marketplaces, Bitcoin exchanges, and popular Bitcoin services.

Privacy-preserving online services, such as the Tor hidden
network [10] and the Bitcoin system, while undoubtedly
useful in many aspects, play nontrivial roles in the burgeoning
cybercrime landscape. The fact remains that an elegant solution
for distinguishing legitimate and illicit use of these services
is far from reach since the goals of Tor, Bitcoin, and the like
are to protect privacy en masse. While Bitcoin does enable
criminal enterprises to better obfuscate money laundering
schemes compared to traditional financial systems, we have
seen that digital footprints embedded in the Bitcoin blockchain
can reveal salient information about its users. Given the recent
prevalence of CryptoLocker [11] — a family of ransomware
that encrypts files on a victim’s system and demands a ransom
to be paid (through MoneyPak or Bitcoin) for the decryption
key — from September 2013 through early 2014, we use this as
an opportunity to better understand the mechanics of a digital
money laundering economy and to generate threat intelligence
on brazen cybercrimes. More generally, we aim to answer the
who, why, and how behind CryptoLocker in hopes that our
findings may be extendable to future cybercrime forensics and

1The Bitcoin system and peer-to-peer network are referred to as “Bitcoin”
while the unit of currency is referred to as “bitcoin” or abbreviated as “BTC”.



analytics. Our contributions are the following:
• We design and implement a framework that collects data

from the blockchain and automatically identifies ransom
payments to Bitcoin addresses belonging to CryptoLocker.
From this, we measure CryptoLocker’s economy in Bitcoin
and provide a lower-bound estimate of financial damages
from September 5, 2013 through January 31, 2014.

• We present a novel approach to analyzing Bitcoin trans-
actions by examining ransom payment timestamps both
longitudinally across CryptoLocker’s operating period, as
well as tranversely across times of day, to distinguish
trends and changes in timestamp distributions.

• We construct a non-trivial, topological network of Cryp-
toLocker addresses and systematically examine Cryp-
toLocker’s financial infrastructure and money laundering
strategies. By leveraging external, real-world data, we
find connections to popular services such as Bitcoin Fog
and BTC-e, and speculate connections to other Bitcoin
cybercrime, such as the Sheep Marketplace heist.

II. BACKGROUND

To understand our analysis of the CryptoLocker economy,
we first discuss the Bitcoin protocol in Section II-A, and we
next discuss the CryptoLocker ransomware in Section II-B.

A. Anatomy of a Bitcoin Transaction

Bitcoin is a decentralized cryptographic currency that was
proposed by Satoshi Nakamoto in 2008 [1]. A bitcoin can
be abstracted as a chain of transactions among owners who
are identifiable by public keys generated from an asymmetric
encryption scheme2. We will refer to these public keys as
Bitcoin addresses, or simply addresses, throughout the rest of
this paper.

To transfer bitcoins, a user issues a transaction, which
consists of a set of inputs, a set of outputs, and a change
address. The inputs are Bitcoin addresses that belong to the
payer. The outputs are Bitcoin addresses that identify the payee
accounts, and the change address (which is optional) is where
the leftover bitcoins from the transactions are sent (the change
address belongs to the payer). Bitcoin’s transaction protocol
stipulates that inputs to a new transaction must reference the
exact value of outputs from previous transactions. In other
words, users must specify from whom they received the bitcoins,
thus forming a chain of transactions, and inputs to a new
transaction may reference as many previous transactions needed
to sufficiently fund the new output. These are known as multi-
input transactions. Finally, the payer digitally signs a hash3 of
the transaction from which he or she received the bitcoins and
the public key address of the payee.

We illustrate Bitcoin’s transaction protocol in Figure 1. We
see that there are three transactions, A, B, and C, and we will
refer to their respective owners as Alice, Bob, and Charlie. In
transaction A, a transaction of 2.0 BTC sent to Alice is used as

2Elliptic Curve Digital Signature Algorithm (ECDSA)
3SHA-256

Fig. 1. The diagram illustrates the anatomy of bitcoin transactions. We have
transactions A, B, and C owned by Alice, Bob, and Charlie, respectively. We
can see that previous transactions to Alice and Bob are referenced in their
respective transactions to Charlie, forming a chain of transactions.

an input to a transaction of 1.5 BTC to Charlie. Since the input
value exceeds the output value, the remaining 0.5 BTC is sent to
a change address belonging to Alice. In transaction B, we see a
similar scenario in which Bob transfers 1.0 BTC to Charlie, but
a change address is not necessary because the input and output
values were equivalent. In transaction C, we see that Charlie
transfers 2.0 BTC to an unnamed user. To issue this transaction,
transaction C references the two previous transactions, from
Alice and Bob, that Charlie received as inputs. Again, the total
input value exceeds the required output value, so 0.5 BTC are
sent to a change address belonging to Charlie.

We can see that the validity of a bitcoin is dependent on
the correctness of each signature in the transaction chain, it is
simple to verify a transaction’s history but difficult to tamper
with confirmed transactions that are deeply embedded in the
blockchain (usually six blocks of confirmation is considered
secure against double-spending attacks [12]). Therefore, Bitcoin
transactions are essentially irreversible. This feature, coupled
with Bitcoin’s pseudonymity, enables cybercriminals to commit
financial fraud that is virtually impossible to reverse and
difficult to trace.

B. CryptoLocker Ransomware

On September 5, 2013, CryptoLocker emerged as a new
family of ransomware that encrypted files on a victim’s system
until a ransom is paid [11]. The decryption keys were withheld
by the threat actors who demanded ransoms to be paid either
through MoneyPak or Bitcoin within 72 hours, otherwise the
decryption keys would (allegedly) be destroyed and recovery
of the encrypted files would be virtually impossible.

CryptoLocker’s infection vector took two forms. In its initial
release, CryptoLocker threat actors primarily targeted business
professionals via spam emails taking the form of “customer
complaints” against recipients’ organizations. Malicious ex-
ecutable files were attached in ZIP archives, which would
aggressively encrypt all the files on a system if opened. Later
versions of CryptoLocker, beginning on October 7, 2013, were
distributed through Gameover ZeuS [13], a peer-to-peer botnet
that used Cutwail spam botnet to send massive amounts of
spam email impersonating well-established online retailers and



financial institutions. These emails typically spoofed invoices,
order confirmations, or urgent unpaid balances to lure victims
into following malicious links which redirected to CryptoLocker
exploit kits.

From September 2013 through early 2014, CryptoLocker
infections were most prevalent in the United States. A study
from the Dell SecureWorks Counter Threat Unit (CTU) research
team [11] shows that from October 22, 2013 to November
1, 2013, 22,360 systems were infected in the United States,
constituting 70.2% of global CryptoLocker infections. During
this period, CryptoLocker was also prevalent in Canada, Great
Britain, India, and several countries in the Middle East and
South Central Asia. In a later sample, gathered from December
9, 2013 to December 16, 2013, during a sinkhole when Cryp-
toLocker activity was limited, CryptoLocker infections became
more dispersed. The concentration of infected systems in the
United States dramatically declined to 23.8% (1,540 infected
systems) and CryptoLocker activity became more prevalent in
Great Britain (1,228 infected systems constituting 19.0% of
global infections), Australia (836 infections constituting 12.9%
of global infections), several other European countries, China,
India, and Brazil.

Although the United States is disproportionately represented
in total global CryptoLocker infections, most ransom payments
from the United States were issued through MoneyPak, an
invariably more economical option than Bitcoin. This was due
to bitcoin’s price volatility at the time. Conversion rates soared
from $120/BTC in September 2013 to well over $1,300/BTC in
late November 2013. We show the exchange rate of US dollars
and bitcoin throughout CryptoLocker’s operational period in
Figure 2. As a result, the CryptoLocker threat actors adjusted
the ransom demand on several occasions to ensure that ransom
demands were not exorbitant. Since, in almost all cases in the
United States, there were no advantages to paying through
the Bitcoin system, individuals who elected to pay via Bitcoin
presumably resided in countries outside of the United States
where MoneyPak was unavailable [11]. For this reason, bitcoin
ransom payments represent only a small portion of the total
financial damages caused by CryptoLocker.

III. MEASUREMENT METHODOLOGY

We next explain our approach to collecting information
from the blockchain and various online fora in an effort
to measure CryptoLocker’s economy and generate threat
intelligence on the CryptoLocker operation. We begin by
highlighting how we generated an address cluster belonging to
CryptoLocker, which we call SCL, from two seed addresses in
Section III-A. Based on information from previous efforts and a
preliminary examination of SCL, we designed and implemented
a framework for identifying ransom payments from the set of
all transactions sent to our cluster in Section III-B.

A. Collecting and Generating Addresses

To collect Bitcoin addresses belonging to CryptoLocker,
we used an approach similar to M. Spagnuolo’s study on
CryptoLocker using BitIodine [7], an open source framework
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Fig. 2. The plot shows exchange rates between US dollars and bitcoins during
CryptoLocker’s operational period from September 2013 through January
2014.

for forensic analysis of the blockchain. Initially, we found two
known CryptoLocker addresses by manually investigating a
reddit thread4 in which victims and researchers posted Bitcoin
addresses belonging to the ransomware. We will refer to one
of these seed addresses, which collected 27 ransom payments,
as Aseed1, and the other seed address, which collected 23
ransom payments, as Aseed2, throughout the remainder of this
paper. An interested reader can find the hashes of all Bitcoin
addresses mentioned in the Appendix. To expand our dataset of
addresses, we use the following two clustering heuristics (based
on the Bitcoin transaction protocol detailed in Section II-A)
to generate a set of Bitcoin addresses controlled by the same
user(s), known as clusters [4]:

1) Multi-input Transactions: A multi-input transaction oc-
curs when a user u makes a transaction in which
the payment amount p exceeds the available bitcoins
(references of prior payments to u) in u’s wallet5. In
such a case, the Bitcoin protocol inputs a set of bitcoins
B from u’s wallet to sufficiently fund p. Therefore, we
can conclude that if the bitcoins in B are owned by a
set of distinct input addresses Si, the input addresses in
Si are controlled by the same user u.

2) Change Addresses: The Bitcoin protocol generates a new
change address in u’s wallet to collect change when the
sum of inputs in B exceeds p. When the set of output
addresses So contains two addresses such that one is a
newly generated address an and the other corresponds
to a payment’s destination address ad, we can conclude
that an is a change address and is controlled by u.

From Aseed1, we generate a set of 968 Bitcoin addresses
belonging to the CryptoLocker cluster, SCL, which happens
to include Aseed2. Although our study does not claim to be
representative of the entire CryptoLocker population within the
Bitcoin ecosystem, which is difficult to quantify due to a lack

4https://www.reddit.com/r/Bitcoin/comments/1o53hl/disturbing bitcoin
virus encrypts instead of/

5A “wallet” is a collection of private keys. It is the Bitcoin equivalent of a
bank account.



of confirmed Bitcoin addresses belonging to CryptoLocker,
we can systematically measure a subset of CryptoLocker’s
economy, SCL, and make inferences about CryptoLocker and
its constituents.

B. Ransom Identification Framework

The goal of our ransom identification framework is to distin-
guish ransom payments from the set of all transactions to SCL.
Foremost, we designed and implemented our identification
framework to be precise — we wanted to identify ransom
payments with a high degree of confidence and minimize the
number of extraneous transactions included in our dataset.
Second, we built our framework to be lightweight — rather
than querying the entire Bitcoin blockchain, we chose a semi-
automatic approach to crawl and parse transactions to SCL

using the Blockchain API [14]. For each address in SCL, points
of interest included the total number of transactions, total sent
and received bitcoins, and the number of ransom payments
received. For each transaction, we were interested in input
and output addresses, bitcoins transferred, and timestamps (in
UNIX epoch time).

The time and ransom parameters in our identification frame-
work reflected findings from previous studies on CryptoLocker
ransomware [7], [11] and our own cursory analysis of SCL.
The heuristics we use are as follows:

• Payments of approximately 2 BTC (±0.1 BTC) between
September 5, 20136 (CryptoLocker release date) and
November 11, 2013 to allow for a three-day ransom period
after CryptoLocker authors decreased the ransom amount
to 1 BTC around November 8

• Payments of approximately 1 BTC (±0.1 BTC) between
November 8, 2013 and November 13, 2013 to allow for
a three-day ransom period after CryptoLocker authors de-
creased the ransom amount to 0.5 BTC around November
10

• Payments of approximately 0.5 BTC (±0.05 BTC) be-
tween November 10, 2013 and November 27, 2013 to
allow for a three-day ransom period after CryptoLocker
authors decreased the ransom amount to 0.3 BTC around
November 24

• Payments of approximately 0.3 BTC (±0.05 BTC) be-
tween November 24, 2013 and December 31, 2013

• Late payments of approximately 10 BTC (±0.1 BTC)
between November 1, 2013 and November 11, 2013 when
CryptoLocker introduced their “CryptoLocker Decryption
Service” for victims who failed to pay ransoms within
the given time frame

• Late payments of approximately 2 BTC (±0.1 BTC)
between November 11, 2013 and January 31, 2014 when
CryptoLocker decreased the cost of their “CryptoLocker
Decryption Service”

• Payments of approximately 0.6 BTC (±0.1 BTC) between
December 20, 2013 and January 31, 2014

6Time intervals are in Universal Time Coordinates (UTC) from the start of
the initial day to the end of the final day.

IV. DATA OVERVIEW

We begin by validating the accuracy of our data and showing
how conservative our estimates are in Section IV-A. We then
perform valuations of the CryptoLocker economy and measure
ransom payments at different stages in its operational period
in Section IV-B.

A. Data Validation

We realize that it is difficult to both comprehensively
measure SCL’s economy and precisely identify all ransom
payments to SCL beyond a reasonable doubt. In turn, the
stringent transaction value and timestamp parameters used in
our ransom identification framework provide a lower bound
estimate of ransom payments and SCL’s economy. To gauge
how conservative our previous estimates are using the aforemen-
tioned framework, we take three different measurements with
varying transaction value and timestamp parameters. The three
measurement methods are as follows: Method 1) transactions to
SCL without any transaction value or timestamp filters, Method
2) transactions to SCL filtered only by transaction values, and
Method 3) transactions to SCL filtered by both transaction
values and timestamps (ransom identification framework).

TABLE I
MEASUREMENTS BY METHOD

Method Transactions BTC USD

Method 1 1,071 1,541.39 539,080.69

Method 2 933 1,257.27 373,934.76

Method 3 795 1,128.40 310,472.38

Table I and Figure 3 show the daily volumes of bitcoins
paid to SCL, and their values in US dollars commensurate with
daily exchange rates7, using the three different measurements.
We see that there are clear disparities between our estimates
from Method 1, which accounted for all transactions to SCL,
compared to our estimates from Method 2 or 3, particularly in
the month of November. The causes of the discrepancies on
November 13 and 14 are four 7 BTC transactions, which are
filtered by Methods 2 and 3, that we cannot find any conclusive
evidence on. The causes of the discrepancies from November
25 through November 27 are eight 4 BTC transactions and a
single transaction8 of 15.6 BTC (November 25). We discover
that these transactions eventually end up in the secondary
money laundering address used in the Sheep Marketplace scam
of 2013 (see Section VI-B). Comparing estimates between
Method 2, which filtered transactions based on known ransom
amounts demanded by CryptoLocker (i.e. 2 BTC, 0.5 BTC, 0.3
BTC), and Method 3, which filtered transactions by ransom
amounts and their respective periods of activity, we see smaller
differences between our estimates, which is a good indication
that the time intervals chosen in our ransom identification

7There are many BTC/USD exchange rates available. We use the “24h
average” BTC/USD exchange rate from http://www.quandl.com.

8https://blockchain.info/tx/43355544/
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Fig. 3. The plots show longitudinal trends in the value of ransom payments to SCL from September 2013 through January 2014. We compare data yielded by
our identification framework to two other measurements detailed in Section III-B. Method 1 measures all transactions to SCL, Method 2 measures ransom
payments filtered by known bitcoin ransom demands, and Method 3 measures ransom payments filtered by both ransom demands and timestamps (ransom
identification framework).

framework (including the 72-hour buffer periods) produce
reliable estimates. This is important because filtering by ransom
amounts is a relatively strong and straightforward heuristic,
whereas filtering by time intervals is an invariably weaker
heuristic. This is because the date that a ransom is paid is
dependent on the date that an individual’s system is infected
and the 72-hour payment window, so it is entirely possible
that a system could have been infected by an older version
of CryptoLocker demanding an outdated ransom. We consider
these anomalous ransom payments and omit these transactions
by choosing Method 3 for the purpose of maintaining reliable
and precise data for analyzing trends in ransom payments in
Section V.

B. CryptoLocker Economy in Bitcoin

Using Method 3, we identify 795 ransom payments to
SCL, which contribute a total of 1,128.40 extorted bitcoins.
Using daily bitcoin to USD exchange rates, we estimate
that these ransom payments valued $310,472.38. However,
as we mentioned before these figures are conservative and the
payouts to SCL may have been as much as 1,541.39 BTC and
$539,080.69 based on Method 1, though we cannot be certain
that the unaccounted transactions are ransom payments.

Since the exchange rates for bitcoins were quite volatile
throughout the months of CryptoLocker’s operation, the value
of these extorted bitcoins would have seen a meteoric increase

in price should they have been exchanged at the height of
bitcoin’s exchange rate. In Figure 4, we show a valuation
in US dollars of the CryptoLocker economy throughout its
operational period. We can see our estimate of $310,472.38 with
the assumption that the CryptoLocker threat actors cashed out
ransom proceeds at the end of each day (“daily cash in”). In the
“cumulative cash in” curve, we assume that the CryptoLocker
threat actors aggregated the bitcoins collected from ransom
payments, and we perform a valuation commensurate with
the USD/BTC exchange rate on each day. Based on the
latter assumption, we estimate that the peak valuation of
the CryptoLocker economy occurred on November 29, 2013
when they had collected a total of 1,044.13 BTC worth
upwards of $1.18 million. The USD/BTC exchange rate also
reached its peak on that day at $1,332.26/BTC. This estimate
is corroborated by the valuation of CryptoLocker provided
by Spagnuolo et al. at $1.1 million taken on December 15,
2013 [7].

It is difficult to accurately measure or visualize the rate of
CryptoLocker infections from Figure 3 due to the changing
ransom demands and exchange rates for bitcoins, so we
construct a time series plot showing the frequency of ransom
payments to SCL throughout CryptoLocker’s operational period.
From Figure 5, we begin to see low levels of activity starting
on September 9, 2013 when the first ransom9 of 1.99 BTC is

9https://blockchain.info/tx/33208314/



TABLE II
SUMMARY OF CRYPTOLOCKER RANSOM TYPES

Type Time period No. ransoms BTC USD

2 BTC Sep. 5 - Nov. 11 422 843.77 146,623.33

10 BTC (Late) Nov. 1 - Nov. 11 9 89.80 23,780.19

1 BTC Nov. 8 - Nov. 13 43 43.04 15,904.49

0.5 BTC Nov. 10 - Nov. 27 116 58.01 46,415.23

2 BTC (Late) Nov. 11 - Jan. 31 10 20.00 14,492.46

0.3 BTC Nov. 24 - Dec. 31 144 43.19 37,759.44

0.6 BTC Dec. 20 - Jan. 31 51 30.59 25,497.24

Total Sep. 5 - Jan. 23 795 1,128.40 310,472.38
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Fig. 4. The plot shows valuations of SCL (using Method 3) in USD. The
“cumulative cash in” curve performs a valuation commensurate with the total
bitcoins extorted in USD while the “daily cash in” curve performs a valuation
commensurate with daily bitcoins extorted to USD.

paid to SCL. On October 8, 2013 through October 11, 2013,
we see a sharp increase in ransom payments (27, 21, 37, and
29, respectively), which is consistent with our knowledge on
CryptoLocker’s use of the spam botnet Gameover ZeuS starting
on October 7, 2013 [13]. As a result, we see that the original
ransom of 2 BTC constituted 422 of the 795 identified ransoms
and nearly half of the total transaction volume in US dollars.
This was undoubtedly CryptoLocker’s most prolific period in
terms of successful infections. Over the next two months, we
see undulating periods of activity which leads us to believe
that CryptoLocker may have been distributed in several batches
throughout its operation. SCL experiences a significant decline
in ransom payments starting in mid-December of 2013 and
eventually comes to a close by the end of January 2014; we
are not aware of any further CryptoLocker addresses after this
period.

V. DATA ANALYSIS

Our goal is to gain insight on CryptoLocker’s targets and
changes in targets throughout its operation by statistically
determining distinct distributions in the times of day that
different ransom types (i.e. 2 BTC, 1 BTC) were paid to
SCL. We achieve this by performing Kolmogorov-Smirnov
(goodness of fit) tests on ransom payment timestamps to
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Fig. 5. The plot shows number of ransoms paid to SCL on each day from
September 2013 to January 2014.

determine whether different ransom types come from different
populations in Section V-A. We analyze these trends and
explain our findings in Section V-B.

A. Kolmogorov-Smirnov Tests

The Kolmogorov-Smirnov test for goodness of fit is based
on the maximum difference between either an empirical and
a hypothetical cumulative distribution (one-sample) or two
empirical cumulative distributions (two-sample) [15], [16].
For our study, we use two-sample Kolmogorov-Smirnov tests
to determine, using ransom payment timestamps, whether or
not samples from different ransom types come from different
parent populations at the 99.5% confidence level. Our sample
populations include 2 BTC, 1 BTC, 0.5 BTC, 0.3 BTC, and 0.6
BTC ransoms, but exclude 10 BTC (Late) and 2 BTC (Late)
ransoms, because we do not have sufficient sample sizes. We
provide metadata on each type of ransom in Table II.

We begin by stating the null hypotheses of our Kolmogorov-
Smirnov tests: fn1(x) and fn2(x) are samples of two empirical
cumulative distribution functions f1(x) and f2(x), and that

H0 : f1(x) = f2(x) −∞ ≤ x ≤ +∞ (1)

The alternative hypotheses are that

H1 : f1(x) 6= f2(x) −∞ ≤ x ≤ +∞ (2)
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Fig. 6. The plot shows trends in the times of day that ransoms were paid to SCL.

TABLE III
FIVE-NUMBER SUMMARY AND MEAN (H:M:S UTC)

Sample Min. Q1 Median Q3 Max. Mean

2 BTC 00:01:20 08:55:36 13:55:06 18:01:00 23:58:33 13:12:42

1 BTC 00:34:31 14:11:09 17:07:49 21:11:29 23:54:33 16:28:47

0.5 BTC 00:07:27 05:51:07 15:16:48 19:23:24 23:55:19 13:14:47

0.3 BTC 00:06:59 04:15:56 11:33:30 17:29:14 23:54:45 11:16:19

0.6 BTC 00:00:01 08:27:37 13:53:14 16:54:00 23:11:33 12:36:46

2 BTC 1 BTC 0.5 BTC 0.3 BTC 0.6 BTC

2 BTC 0.3028 | 0.2770 0.1449 | 0.1815 0.1802 | 0.1671 0.1068 | 0.2566

1 BTC 0.2476 | 0.3089 0.3532 | 0.3006 0.3461 | 0.3582

0.5 BTC 0.1865 | 0.2158 0.2067 | 0.2907

0.3 BTC 0.1908 | 0.2819

0.6 BTC

Fail to reject H0 D    |   D crit Reject H0     D   |   D crit

Fig. 7. The table compares the test statistic D and the critical value Dcrit

for all permutations of ransom types. If D > Dcrit, we may reject the
null hypothesis and assume that the samples come from two different parent
populations at the 99.5% confidence level. These are shown in red.

We then compute empirical cumulative distribution functions,
f1(x) and f2(x), from the two samples. To compute the test
statistic D from f1(x) and f2(x), we find the maximum
absolute difference over all values of x given by

D = max
x
|Fn1

(x)− Fn2
(x)| (3)

After computing D for all permutations of our sample pop-
ulations, we compute critical values, Dcrit, at the 99.5%
confidence level for each permutation given by

Dcrit = 1.73
√
(n1 + n2)/n1n2 (4)

In Figure 7, we compare D and Dcrit for each permutation.
For permutations where D < Dcrit, we fail to reject the
null hypothesis, which tells us that the two samples did not
come from different populations at the 99.5% confidence level.
For permutations where D > Dcrit, we may reject the null
hypothesis, which tells us that the two samples come from two
different populations at the 99.5% confidence level.

B. Analysis of Timestamp Data

Before we go into detail on the time series and density plots
in Figure 6 and a statistical summary of time distributions
in Table III, we put into perspective a hypothetical time
distribution that CryptoLocker victims from the United States
paid primarily in bitcoin (which we know to be false from
the CryptoLocker study by CTU researchers [11]). What we
do know is that CryptoLocker targeted business professionals,
so we would expect ransom payments to be transacted during
typical working hours, or at the very least, during the daytime.
Let us assume a typical 9:00 a.m. to 5:00 p.m. working day
for business professionals in the United States. In Pacific Time
(PT, UTC-08:00), 9:00 a.m. to 5:00 p.m. would correspond to
17:00 UTC to 1:00 UTC on the following day. In Eastern Time
(ET, UTC-05:00), 9:00 a.m. to 5:00 p.m. would correspond to
14:00 UTC to 22:00 UTC. Based on Figure 6 and Table III,



the only sample that could follow such a distribution is the 1
BTC sample, however, we cannot conclude that 1 BTC ransom
payments were primarily paid by victims from the United
States without further evidence. Because we have no reason
to believe that the marginal number of CryptoLocker victims
in the United States who opted to pay using bitcoin would
choose to pay in the nighttime, we assume that ransoms paid
to SCL came from outside of the United States.

From our Kolmogorov-Smirnov tests, we find that the
timestamp sample of 2 BTC ransoms differs from samples
of 1 BTC and 0.3 BTC ransoms. Additionally, we find that
the sample of 1 BTC ransoms differs from the sample of 0.3
BTC ransoms. Thus, we know that all three samples come
from different populations at the 99.5% confidence level. In
the 2 BTC sample, the median time of payment is 13:55:06
UTC with an interquartile range (Q3 −Q1) of 09:05:24 hours.
From the density curve in Figure 6, we see that it has a
unimodal distribution, which suggests that a large portion of
ransom payments during this time came from the same region.
Referring back to the CTU researchers’ study, we see that from
October 22, 2013 to November 1, 2013, they measure 1,767
infections from Great Britain, which has the second highest
percentage of total global infections (5.5%) after the United
States (70.2%). If we use our rough 9:00 a.m.–5 p.m. “working
day conjecture”, we would expect ransom payments from Great
Britain (GMT, UTC±00:00) to be concentrated between 9:00
UTC and 17:00 UTC. This is consistent with the first and third
quartiles from the 2 BTC sample (08:55:20 UTC and 18:01:00
UTC), but again, we make no solid claims without further
evidence.

Turning to the 1 BTC sample, the median time of payment
is 17:07:49 UTC with an interquartile range of 07:00:20 hours.
We see that it also has a unimodal distribution and restate that
the distribution of timestamps from this sample roughly models
what we would expect if a majority of these ransoms were paid
from the United States. Next, we take a look at the 0.3 BTC
sample, which has a median time of payment of 11:33:30 and
an interquartile range of 13:13:18. We see that the large spread
can be attributed to the 0.3 BTC sample’s bimodal probability
distribution, which suggests that the ransom sample came from
two distinct sources. One of these sources closely resembles the
time distribution from our 2 BTC sample, which we imputed
to ransom payments from Great Britain. The second source
of ransoms in early December falls between a 6-hour time
interval from 23:00 UTC to 5:00 UTC on the following day.
Referring back to the CTU researchers’ study, from December
9, 2013 to December 13, 2013, their measurements show that
CryptoLocker infections become more dispersed with 23.8%
from the United States, 19.0% from Great Britain, and 12.9%
from Australia. We continue to see CryptoLocker infections in
Great Britain, which is consistent with one of the peaks in the
bimodal 0.3 BTC sample. If we convert the time interval from
23:00 UTC to 5:00 UTC using our “working day conjecture”
and set 23:00 UTC as 9:00 a.m., we would expect these ransoms
to come from time zones with an offset of UTC+10:00. This
corresponds to the Australian Eastern Time Zone, which is,

Fig. 8. A visualization of outgoing bitcoin transactions from the CryptoLocker
cluster, SCL, network. Based on Louvain Modularity for community detection,
we distinguish 17 distinct sub-communities in the SCL network. We see that
the ransom balances from all addresses within a community are transferred to
a single aggregate address at the center. We group several sub-communities
together based on shared addresses and the times they were active (i.e.
Community 1, or c1) and identify eight communities of interest (c1 through
c8).

again, consistent with measurements by the CTU researchers’
CryptoLocker study, however we make no solid claims that a
large portion of the 0.3 BTC ransoms undoubtedly came from
Australia.

VI. FINANCIAL INFRASTRUCTURE

We next turn to understanding CryptoLocker’s financial
infrastructure by analyzing communities in the CryptoLocker
cluster, SCL. We begin by overviewing SCL’s topology in
Section VI-A. Examining SCL at a lower level, we impute real-
world data found on various online fora and Bitcoin services
to distinct communities in Sections VI-B to VI-C. We find
connections to BTC-e and Bitcoin Fog and speculations to the
Sheep Marketplace scam and other bitcoin cybercrime.

A. Transaction Graph

To better understand CryptoLocker’s financial infrastructure,
we use Gephi10, an open source software for network visu-
alization and exploration, to visualize outgoing transactions
from SCL (Figure 8). In total, the network contains 993
nodes (addresses) and 1,020 weighted (by BTC), directed
edges, which delineate one or more transactions between two
addresses. The 993 addresses in the network are comprised
of 968 addresses from SCL and 25 additional addresses that
are recipients of outgoing transactions from SCL, which we

10http://gephi.github.io/
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Fig. 9. Timeline of activity related to the Sheep Marketplace.

will call aggregate addresses. Using the Louvain Method for
community detection, we distinguish 17 distinct communities
in the CryptoLocker network [17]. An interested reader can
see that the typical community is comprised of addresses
in SCL (child nodes) that report to a central aggregate
address to which all collected ransom payments are sent to
(parent node). We characterize eight communities of interest
(arbitrarily and not chronologically named c1 through c8) that
yield external information on addresses in SCL from our
analysis. Communities 2 through 8 are canonical communities
in that they each correspond to only one aggregate address.
Community 1, on the other hand, is not centralized around one
single aggregate address, but rather is comprised of multiple
small communities and aggregate addresses. We will expand
on c1’s topology in Section VI-B, which we learn to be
CryptoLocker’s earliest community.

B. BTC-e and the Sheep Marketplace

Before we begin our analysis of CryptoLocker’s communities,
it helps to provide background on one pattern we found in
several communities, namely an indirect connection to the
Sheep Marketplace scam of 2013. The Sheep Marketplace
was the successor of the Silk Road [18], [19], an anonymous
online marketplace specializing in the trade of narcotics, after
its infamous takedown in February 2011. Launched in March
2013, the Sheep Marketplace quickly gained traction as the
leading anonymous online drug marketplace until, on November
21, 2013, the owners shut down the site and absconded with
96,000 bitcoins (over $100 million) belonging to its users [20].
We find that several aggregate addresses and child addresses
make transactions to BTC-e11, one of the largest bitcoin
exchanges available where users can convert bitcoins into other
cryptocurrencies, Dollars, Euros, and Rubles. From BTC-e,
the bitcoins are then transferred to two money laundering
addresses used in the Sheep Marketplace scam. While it is
unclear what sort of connection the CryptoLocker operation and
the Sheep Marketplace may share, if there is any connection
at all, we continue by pointing out instances in which the two
are somehow linked. A timeline of SCL’s activity in relation

11https://btc-e.com/

to the Sheep Marketplace is provided in Figure 9 (with the
assumption that these speculations are true).

1) Case study on Aseed1: We first manually analyze Aseed1

to understand CryptoLocker’s early operation. We discover
an anomalous transaction sharing the aforementioned Sheep
Marketplace pattern, which prompts us to look for this same
pattern in other communities.

Incoming transactions: On September 7, 2013, Aseed1

receives a payment of one BTC from a temporary address
a1 active for only that day. An outgoing payment for the same
amount is processed four days later. We believe this was a test
trial for CryptoLocker’s payment system. On September 13,
2013, Aseed1 receives its first ransom payment of two BTC.
Throughout the rest of the month, Aseed1 receives 26 additional
ransom payments of approximately two BTC each, which totals
to 53.9081 BTC (worth about $6,600 at the time of payment).
On September 29, 2013, Aseed1 receives an anomalous payment
of 0.0002 BTC from an inconclusive single-use address a2.

Outgoing Transactions: From September 27, 2013 to October
15, 2013, Aseed1 makes nine outgoing payments amounting
to 53.9081 BTC (the exact number of bitcoins collected from
ransom payments) to aggregate addresses in c1. Aseed1’s
remaining balance after its distribution of ransom payments
is the unaccounted 0.0002 BTC. Considering that the exact
amount of bitcoins from ransom payments is transferred to
aggregate addresses, as opposed to the entire balance, we
hypothesize that transfers from child addresses to aggregate
addresses were automated, rather than performed manually.

An Anomalous Transaction: On November 19, 2013, over a
month after Aseed1’s last activity and right before the Sheep
Marketplace shutdown, we find that the unaccounted 0.0002
BTC is transferred as part of a multi-input transaction of 15
BTC to an address Aexchange1 belonging to BTC-e. From
the BTC-e address, the 15 BTC are included in a multi-input
transaction of 1,000 BTC to an address that we later learn to
be Sheep’s primary money laundering address Asheep1, which
has processed over 466,000 BTC as of February 2015.

Our efforts to find external data on Asheep1 leads us to a
reddit thread that details how user sheeproadreloaded2 [21]
traced the $100 million of stolen bitcoins from the Sheep
Marketplace, through Bitcoin Fog, to the money laundering



address Asheep1. Examining the transaction history of Asheep1,
we find that it has a balance of 50,000 BTC on November 16,
2013. Throughout the rest of the month, we notice a massive
increase in activity as it receives a total of 96,500 BTC while
sending a total of 50,000 BTC to auxiliary addresses, most
notably a secondary money laundering address, Asheep2.

Considering the time of Aseed1’s final transaction just two
days prior to the Sheep Marketplace’s alleged theft, and its
discontinued use after transferring its balance to aggregate
addresses, we speculate that Aseed1’s anomalous 0.0002 BTC
may have been part of the Sheep scam. Posted within a week of
Aseed1’s anomalous transaction on November 22, 2013, we find
a reddit thread12 detailing a similar occurrence in which a user
reports having 3.9 BTC stolen from his or her Mt. Gox [22]
account and transferred to an intermediate address before
ending up in Asheep2. This indicates that Aseed1’s anomalous
transaction is not an isolated incident and we use this finding
as a point interest for other CryptoLocker addresses.

2) Community 1: While canonical communities c2 through
c8 each correspond to only one aggregate address, we group five
small communities, which we will call sub-communities, and
six aggregate addresses into c1. The largest sub-community
in c1, containing 42 addresses (including addresses Aseed1

and Aseed2), is the connecting component between the four
surrounding sub-communities. We combine these five sub-
communities into a single community, c1, based on connectivity
and the times they were active.

We find that addresses in c1 were active during the onset
of CryptoLocker’s attacks between September 9, 2013 and
October 15, 2013. According to c1’s decentralized topography
and the reuse of addresses for ransom collection (i.e. Aseed1

and Aseed2), we can assume with a high degree of confidence
that CryptoLocker’s threat actors did not dynamically generate
new addresses for its nascent attacks. The value in doing so
would be to obfuscate relationships between CryptoLocker
addresses and money laundering addresses.

Examining c1 at a low level, we find that the addresses in
c1’s largest sub-community report to two single-use aggregate
addresses which collect 40 BTC and 20 BTC. From here,
we see that these balances are processed through long chains
of single-input transactions with fractional bitcoins chipped
away in each transaction, which is characteristic of the Bitcoin
Fog mixer [8]. Bitcoin Fog is a mixing service accessible via
Tor and allows users to deposit their bitcoins to up to five
newly generated addresses. To deter obvious indications of
using Bitcoin Fog, the service takes a randomized fee between
1–3% of the transaction value and processes bitcoins over
a randomized timespan between 6 and 96 hours. The four
remaining sub-communities in c1 are all similar in size and
structure. Each sub-community consists of between 14 and 18
addresses which lead to aggregate addresses holding 20 to 40
BTC in preparation for tumbling.

12https://www.reddit.com/r/Bitcoin/comments/1r9rtp/i just had 39 btc
stolen from my mtgox account/

3) Community 4: We next take a look at c4, which is
comprised of 110 addresses. Throughout mid-November (when
CryptoLocker decreased the ransom amount due to the rising
value of bitcoins), addresses in c4 receive numerous ransom
payments of 0.5 BTC. On November 26, 2013, the balances
from addresses in c4 are transferred to a single-use aggregate
address Ac4 belonging to BTC-e, which collects a total of
96.6 BTC. On the same day, the aggregate address transfers
its balance into a multi-input transaction of 1,000 BTC to
the Sheep Marketplace’s secondary money laundering address,
Asheep2.

4) Community 7: Community c7 is a medium-sized com-
munity containing 83 addresses. Its aggregate address Ac4 also
belongs to BTC-e and collects 82.2 BTC from December 5
to December 9, 2013. On December 6, 9, and 10, we see
that the aggregate address transfers its bitcoins in multi-input
transactions of 400 BTC, 500 BTC, and 300 BTC, which are
also sent to Sheep’s secondary address, Asheep2.

C. Botnets, Speculations, and Misc.

From communities c2, c3, c5, c6, and c8, we characterize
how CryptoLocker’s operation evolved over time and we find
subtle connections to other bitcoin cybercrime.

1) Community 2: By far the largest community in the Cryp-
toLocker network, c2 accounts for one-third of the addresses
in SCL. We find that c2 quickly follows c1 and is active
from October through mid-November, CryptoLocker’s most
prolific period of operation. Consistent with CryptoLocker’s
use of Gameover ZeuS and the Cutwail botnet starting on
October 7, 2013, the increased distribution of ransomware
called for more addresses to collect ransom payments. Out of
the 328 addresses in c2, 318 are single-use addresses. Thus, we
infer that the CryptoLocker threat actors opted to dynamically
generate addresses, instead of reusing addresses, to obfuscate
their activity.

At the center of c2 is an aggregate address Ac2 belonging
to BTC-e, which has received a total of 5,332.8 BTC. There
is a notable disparity between how the extorted bitcoins were
handled between c1 and c2. In c1, we see a clear indication
that the CryptoLocker threat actors decide to use Bitcoin
mixers, particularly Bitcoin Fog, to launder their proceeds.
In c2, however, we see that the threat actors decide to generate
new addresses for each ransom payment and directly transfer
their proceeds to BTC-e without any means of obfuscation. The
downfalls of the former method, which include a prolonged
return on proceeds, transaction fees, diminished anonymity
for large transactions, and trust in a third party, may have
deterred CryptoLocker’s growing enterprise from continued
use of Bitcoin Fog. In the latter method, the CryptoLocker
authors might have assumed that newly generated addresses
would be sufficient in preserving privacy.

2) Community 3: Community c3 is a medium-sized commu-
nity consisting of 52 addresses. On February 12, 2014, 14.63
BTC are transferred to c3’s single-use aggregate address Ac3

predominantly in 0.3 BTC ransom payments. Considering the
time frame of 0.3 BTC ransom payments, we presume that



c3 is one of CryptoLocker’s later communities. The balance
from c3’s aggregate address is transferred on March 3, 2014
as part of a 100 BTC multi-input transaction to an address
a3 which has processed 374 BTC as of April 2014. Further
analysis of c3 and its aggregate address does not yield any
useful information, however, we note that this transaction is
one of SCL’s last movements.

3) Community 5: c5 is a medium-sized community contain-
ing 57 addresses. On January 14, 2014, c5’s aggregate address
Ac5 collects a sum of 50 BTC from its component addresses.
After just one hour, the balance is transferred as part of a
multi-input transaction of 1,134.99 BTC to an address, a4, that
has processed over 277,000 bitcoins as of early 2014. In our
search for external information, we find another reddit thread13

posted on February 3, 2014 explaining how the reddit user’s
coins were subject to an unauthorized withdrawal attempt to
a4 (though the transaction was unsuccessful due to insufficient
funds). We also find a BitcoinTalk thread14 alleging that the
address is related to the BitPay hack while another comment
in a separate blogpost15 suggests that the address belongs to
Mt. Gox.

4) Community 6: Community c6, the second largest commu-
nity in the CryptoLocker cluster, is comprised of 141 addresses.
The community’s aggregate address Ac6 collects a total of 100
BTC in ransoms payments on February 12, 2014 (another
one of CryptoLocker’s later communities). One day later, the
balance is transferred as part of a 528.74 BTC multi-input
transaction to an address, a5, which has processed over 11,000
bitcoins as of February 2014. One reddit post 16 mentions that
a5 is related to the potential Mt. Gox address, a4. Thus, we
assume that a5 is, at the very least, tied to some kind of Bitcoin
cybercrime.

5) Community 8: c8 is comprised of just 22 addresses. The
aggregate address Ac8 receives just 6.67 BTC on February 12,
2014. One day later, we see that the balance is transferred to
a5. Again, we assume that this community may be linked to
some kind of Bitcoin cybercrime.

VII. RELATED WORK

The public’s interest in Bitcoin has continually grown
throughout the years, undeterred by countless hacks and scams.
Therefore, it is important for users to fully understand the
implications and limitations of the Bitcoin system. Numerous
studies have thoroughly examined the flawed provisions for
privacy inherent in the Bitcoin system. Reid and Harrigan
performed one of the first analyses of anonymity in the Bitcoin
system and were able to attribute external identifying informa-
tion to addresses using a nascent representation of the Bitcoin
transaction network [3]. Androulaki et al. tested Bitcoin’s
privacy provisions, in both the actual Bitcoin environment and

13https://www.reddit.com/r/Bitcoin/comments/1wvz66/who is taking my
bitcoins/

14https://bitcointalk.org/index.php?topic=399024.0
15http://btcanalytics.blogspot.com/2014/02/

bitcoins-most-mysterious-wallet.html
16https://www.reddit.com/r/DarkNetMarkets/comments/1xw39e/ok so

everyones trying to find out the giant/

a simulation of Bitcoin in a university setting, and proved
that behavior-based and transaction-based clustering techniques
could effectively deanonymize up to 40% of Bitcoin users
in the simulation [4]. Ron and Shamir perform an analysis
of the entire transaction graph and examine how users spend
bitcoins, how bitcoins are distributed among users, and means
by which users protect their privacy in the Bitcoin system [5].
Meiklejohn et al. explored Bitcoin wallets by using clustering
heuristics (similar to Androulaki et al.) in order to classify
the owners of Bitcoin wallets and discussed the growing
discrepancy between potential anonymity and actual anonymity
in the Bitcoin protocol [6].

In the growing literature on measuring cybercrime, our
study on CryptoLocker is related to a number of works aimed
at analyzing cybercrime in the Bitcoin ecosystem. Christin
performed a comprehensive measurement analysis of the Silk
Road, detailing the anonymous marketplace’s constituents
and discussing socioeconomic and policy implications of the
results [18]. In a later study, Soska and Christin perform a
longitudinal study of online anonymous marketplaces, which
includes the Sheep Marketplace, and examines how these
virtual marketplaces have grown and evolved [19]. Spagnuolo
et al. created an expandable framework, called BitIodine [7],
used for forensic analysis of the Bitcoin blockchain; they
investigate addresses corresponding to the Silk Road owner,
known as Dread Pirate Roberts, and CryptoLocker ransomware.
Möser evaluated the effectiveness of several mixing services,
commonly used to launder bitcoins, on preserving privacy [8].
Vasek et al. investigated the impact of distributed denial-of-
service attacks on popular Bitcoin services [23]. Ron and
Shamir used the blockchain to timeline events leading to Silk
Road owner Dread Pirate Robert’s accumulation of wealth
before his arrest [24]. In a similar fashion to many of the
aforementioned works, we have performed the first in-depth,
systematic analysis of the CryptoLocker network in the Bitcoin
ecosystem.

VIII. DISCUSSION AND FUTURE WORK

Our study corroborates findings from previous studies on
CryptoLocker ransomware, but we want to emphasize that
the measurements and analysis in our own study were solely
drawn from blockchain analysis and crawling publicly available
data. In some cases of cybercrime analysis, this can be
a substantial limitation, but in others, this can be quite a
valuable resource. We concede that our findings are, at best,
controvertible assumptions unless further concrete evidence
on the CryptoLocker operation proves otherwise; although
we show that our findings are consistent with other studies
on CryptoLocker, our study cannot standalone prove any of
the conjectures made beyond a reasonable doubt. However,
considering how rapidly the cybercrime landscape is changing,
there will be circumstances in which we, as researchers, do
not possess substantial evidence on nascent cybercrimes. In
this regard, we may use some of the techniques discussed in
our study to form a rudimentary understanding on these new
schemes.



We have performed an in-depth, measurement analysis on
CryptoLocker’s economy and financial infrastructure. Initially,
from two seed CryptoLocker addresses gathered from online
fora, we generate a cluster of 968 addresses belonging to
the CryptoLocker enterprise. From there, we identify and
quantify ransoms paid (in bitcoin) by victims and produce an
estimate upwards of $310,472.38 in financial damages. Based
on our analysis of ransom timestamps, we form conjectures on
regions where CryptoLocker infections were prevalent from
trends in the times that ransom payments were made and
compare our findings with other studies on CryptoLocker.
Finally, we visualize the CryptoLocker operation’s underlying
financial infrastructure and analyze the topology in a modular
fashion. We find subtle links between CryptoLocker, the Sheep
Marketplace heist, and other Bitcoin cybercrime schemes.
Our findings suggest that Bitcoin cybercrime may be much
more interconnected than originally considered and that further
analysis could uncover and confirm any existing relationships
in the underground cybercrime landscape.

Given the increased prevalance of ransomware in the cyber-
crime landscape as of late, we believe that our study may enable
further research in longitudinally measuring the evolution,
economies, and strategies of ransomware criminal enterprises.
We plan to further develop our heuristics for identifying
ransom transactions from the Bitcoin blockchain in order to
comprehensively measure the economies of CryptoLocker, as
well as newer families of ransomware, and better understand
their underlying financial infrastructures and money laundering
strategies.
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APPENDIX

Table of Bitcoin Addresses
Aseed1 1KP72fBmh3XBRfuJDMn53APaqM6iMRspCh
Aseed2 18iEz617DoDp8CNQUyyrjCcC7XCGDf5SVb
Aexchange1 161yYpWYCx8cWGYW95QaZ9NUuR3fd5n4xt
Asheep1 1CbR8da9YPZqXJJKm9ze1GYf67eKAUfXwP
Asheep2 174psvzt77NgEC373xSZWm9gYXqz4sTJjn
Ac2 1AEoiHY23fbBn8QiJ5y6oAjrhRY1Fb85uc
Ac3 1D5DoY5KxGtcatoxR5M3fSEeRpxfkgbsA3
Ac4 15F4g9sou83dNojKBikHx9vAkgnr1AhAEH
Ac5 1C1ypgQSiFdkwkRN7F9VrYFJG4wjyGPsfB
Ac6 1KpYNzAjTXZHwY782S4JMQbAXD8Ymyyw8s
Ac7 1AzMZUvHuakMgEaukDuzdAMujkXxgrHCGZ
Ac8 1LXbUwPDaBGAwxAQzutsLoTQJhTeyGskQb
a1 1wffa72YQFTYJGMwuxbvWHFNAFGNKX3Bm
a2 1Jfb6hbqfzwdLdR6Bspfh4HkND2mFj8LL
a3 14CR4HYnJpvNFmtpoq34JUdHcA2rXeehkd
a4 1Facb8QnikfPUoo8WVFnyai3e1Hcov9y8T
a5 15WtLXz24WitRWtfdEzWPWZJYYDEBjjhUf


